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Abstract.  A finite element mesh is said to be ‘tangled’ if two or more its ele-

ments overlap. This can occur, for example during mesh optimization and mesh 

morphing. Modern finite element theory and commercial FEA packages are not 

designed to handle tangled meshes, i.e., they can lead to erroneous results. 

In this paper, a new mathematical framework for FEA is proposed for handling 

tangled simplicial meshes. Specifically, by defining a cell-decomposition of a tan-

gled mesh, and an associated set of cell shape functions as an oriented linear com-

bination of the classic element shape functions, it is shown that one can success-

fully carry out accurate FEA over tangled meshes. Numerical examples illustrate 

the correctness of the proposed framework.  

1 Introduction 

In modern finite element analysis (FEA), the underlying mesh is required: (1) to 

be connected, (2) to conform to the boundary, (3) to be of ‘good quality’, and (4) 

not contain overlapping elements [1,2]. Figure 1 illustrates an unacceptable mesh 

with overlapping elements; such a mesh is said to be tangled. 

 

 

Figure 1: A tangled mesh and a pair of over-lapping elements. 

Modern finite element theory and commercial FEA packages are not designed to 

handle tangled meshes, i.e., they can lead to erroneous results if such meshes are 

used. This is confirmed later in this paper through a simple experiment using 

ANSYS [15]. Further, tangling of finite element meshes can occur during:  

• Mesh generation: Mesh generators are generally adept at constructing high-
quality non-tangled meshes. Yet, for example, during all-hex mesh genera-

tion, tangling can inadvertently occur, resulting in a mesh-failure [4].  

• Mesh optimization: Similarly, mesh optimizers, in an attempt to improve mesh 
quality, can inadvertently introduce tangling [5–8]. Further, classic notions of 

mesh quality are inappropriate in the presence of tangles [5,8–10]. Therefore, 

the mesh is first untangled [10], and then optimized [5]. More recently, re-



search efforts have focused on improving the quality of meshes while untan-

gling [7,11,12].  

• Mesh Morphing: When the underlying geometry is modified, it may be advan-
tageous to morph, i.e., stretch and transform, an existing mesh rather than 

remesh [13]. Various mesh morphing techniques exist today [13]. Unfortu-

nately, all mesh morphing methods, especially the simple and efficient ones, 

can lead to tangled meshes [13].  

• Mesh deformation: Last, but not the least, in large-scale deformation, exces-
sive node movement can result in tangling [14]. Currently, the only accepta-

ble strategy is to remesh. However, remeshing can result in a significant loss 

in accuracy. 

Researchers and practitioners today unanimously recommend untangling the mesh 

prior to analysis. For example, to quote [11]: “Because tangled meshes generate 

physically invalid solutions, it is imperative that such meshes [be] untangled.” 

Unfortunately, untangling is as difficult as mesh generation and optimization [12]. 

Therefore, a new extension to FEA is proposed in this paper; this extension pro-

vides the necessary framework for handling tangled meshes.  

2 Proposed Framework 

2.1 Problem Identification 

Consider the finite element mesh in Figure 2; specifically, consider an interior 

node within the mesh, and all elements attached to it. Now, in classic FEA, over 

each element, shape functions  are defined such that: (1) each function takes a val-

ue of 1 at the node, (2) it goes to zero at all other nodes of that element, and (3) the 

functions are continuous across element boundaries. These shape functions are 

then ‘stitched’ together into single hat function φ  that is continuous, and serves as 

the basis for seeking approximate solutions in FEA. In other words, one seeks so-

lutions of the form: 
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Figure 2: Finite element mesh and the ‘hat-function’. 

 



Now consider a tangled mesh in Figure 3. Specifically, consider the subset of the 

mesh associated with the node of interest. When a mesh gets tangled, the hat-

function φ  is ill-defined since there are points that belong to multiple elements 

(Figure 3), and therefore multiple element shape functions are defined at such 

points.  

The ambiguity of φ  can be resolved in multiple ways. For example, φ  at an over-

lapping point can be defined as: (1) the maximum of all element shape function 

values at that point, or (2) the sum/average of these values, and so on. However, in 

addition to resolving the ambiguity, the continuity condition must also be satis-

fied. Thus, an arbitrary method of resolving the ambiguity will not do. 

    

Figure 3: A tangled mesh surrounding a given node. 

2.2 Proposed Theory 

First observe that in a tangled simplicial mesh, some elements are positively ori-

ented, while others are negatively oriented; this can be determined through a sim-

ple Jacobian test. 

Definition 1: Let the orientation of a simplicial element be denoted by 
k
Θ , where 

1
k
Θ = ± . □ 

Next, since a point within a tangled mesh can belong to multiple elements, we de-

fine here an index associated with each point as: 
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i.e., it is the set of all elements (integers) that contain that point. The notion of an 

index naturally leads to the definition of a cell where we group together all points 

with identical index. 

Definition 2: A cell is the set of all points with identical index I . □ 
Figure 4 illustrates the indices associated with the cell decomposition after tan-

gling. Thus, there are points that belong to elements 1 and 6, for example. Further, 

in the cell {1,6}, element-1 is positively oriented, while element-6 is negatively 

oriented. Observe that a cell need not be convex, or even connected. 



 

Figure 4: Cells indices. 

Recall that, in classic FEA, over each element, a shape function 
k
N  is defined. 

We can now combine these shape functions into a cell shape function  S
α
 defined 

as follows: 
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where 1
k
Θ = ±  is the orientation of the simplicial element

k
E . In other words, 

the cell shape function is weightage average of the element shape functions asso-

ciated with that cell, where the weighting captures of the orientation of that ele-

ment. Finally, the most critical theorem in establishing a finite element framework 

for tangled meshes is stated next. 

Theorem: The cell shape functions defined via Equation (3) over the cell decom-

position satisfy the following properties: (1) they are continuous across cell-

boundaries, and (2) they vanish on the boundary of the corresponding cell com-

plex. 

Proof: Will appear in a future publication; a preliminary proof appears in the re-

cent PhD thesis [16]. 

□ 

Essentially, the theorem guarantees that the cell shape functions S
α
 can be used 

effectively as a basis for finite element analysis over a tangled mesh. 

2.3 Implementation 

The previous section introduced the concept of cells and cell shape functions for 

establishing certain theoretical properties. However, cells are unnecessary in a 

practical implementation of FEA over a tangled mesh. In other words, there is no 

need to explicitly compute the cell decomposition; the underlying reason is as fol-

lows. 

Upon stitching the cell shape functions S
α
 together, one can show that an equiva-

lent definition for the hat function is simply given by: 
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In other words, the hat function at any point is simply the oriented linear combina-

tion of all element shape functions of elements that contain that point. Observe 

that when the elements are not tangled this recovers the classic definition. Now, 



one can substitute this into the variational equation, for say, the Poisson equation 

resulting in the following linear system: 
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and j�  is the vector of shape functions associated with an element, due to all 

nodes attached to it. 

Performing FEA over a tangled mesh therefore requires the following steps: 

1. The stiffness matrix
classic
K  is computed exactly as in classic FEA [1].  

2. Then, to compute 
overlapping
K  the overlapping regions must be computed 

(see Figure 5a). Then, in order to perform the integration, the overlap-

ping region is subsequently triangulated, see Figure 5b.  

3. Finally, 
oriented
f  is computed exactly as in classic FEA with one modifica-

tion: the orientation of the element must be accounted for. This is ac-

complished by multiplying the local components of 
oriented
f  for each el-

ement by its orientation ( 1± ) before adding to the global 
oriented
f  term. 

Further details will appear in a future publication; see [16]. 

 

Figure 5: (a) Overlapping region of elements Ej and Ek, and (b) the triangulation of 

the overlapping region. 

3 Numerical Results 

The theory presented is now illustrated through numeric examples. In particular, 

the first few examples are ‘validity tests’; this is analogous to patch tests in classic 

FEA [1,17,18]. These tests are designed in this paper to identify incorrect theo-

ry/implementation. In particular, classic FEA, including ANSYS 13 [15], a com-

mercial FEA system, is compared against the proposed methodology. After these 

tests, the focus turns to a specific application of tangling, namely mesh morphing.  



3.1 Single Tangle in 2-D 

Consider a thermal conduction problem over a unit square with a thermal conduc-

tivity of 1. The left-edge is set to a temperature of 0, a thermal flux of 1 is applied 

on the right-edge, and the top and bottom edges are insulated. The exact solution 

to this problem is ( , )T x y x= . 

The problem is solved over two meshes with linear element shape functions: (1) a 

regular valid mesh of Figure 6a, and (2) a tangled mesh of Figure 6b that is con-

structed by flipping the x-location of the internal nodes in Figure 6a about the 

0.5x =  line. Since the solution falls within the finite element space, the exact so-

lution should be recovered to within machine precision (even though the triangles 

are of poor quality). 

      

Figure 6: (a) Valid mesh and (b) tangled mesh. 

Table 1 illustrates the solution for the two meshes at the location (1, 0) , as pro-

duced by ANSYS and the proposed methodology. As expected, with a non-

tangled mesh, the exact solution of 1.0 is recovered via ANSYS 13 [15] and the 

proposed methodology (to within machine precision). However, when the mesh is 

tangled, ANSYS results in a 1.2% error. Increasing the size of the inverted ele-

ment leads to errors as large as 10%. On the other hand, the proposed theory 

yields the exact solution even in the case of the tangled mesh. 

Table 1: Temperature at x=1, y=0 

 
ANSYS 

13 

Proposed 

Theory 

Valid 

Mesh 
1.0000 1.0000 

Tangled 

Mesh 
0.9875 1.0000 

 

3.2 Multiple Tangles in 2-D 

Next consider triangulating a unit square, see Figure 7a, and then randomizing the 

location of the interior nodes to produce the tangled mesh shown in Figure 7b. A 

(random) linear field ( , ) 0.323 0.651 0.998T x y x y= − +  was chosen as the exact so-

lution to a Poisson problem; Dirichlet conditions, Neumann conditions, and body 

forces were computed from this field, and applied on the tangled mesh as follows: 

Neumann conditions are applied at the bottom, right, and top boundaries, and Di-



richlet conditions are applied to the left boundary. The objective is to recover the 

exact solution using linear elements. Similarly a random quadratic field was cho-

sen as the exact solution, and the objective was to recover the exact solution using 

quadratic elements. 

       

Figure 7: Initial untangled mesh (a) and the actual tangled mesh (b) used for va-

lidity tests. 

The results are summarized in Table 2 where normalized errors over all nodal val-

ues (defined as (|| ||)/ || ||
Exact Exact

abs u u u− ) from classic FEA and the proposed 

theory are summarized. Observe that, once again, the proposed theory recovers the 

exact solution, whereas classic FEA fails the test. 

Table 2: Normalized errors for 2-D Poisson problem validity test 

 
Classic 

FEA 

Proposed 

theory 

Linear 1.8438 4.9145e-13 

Quad-

ratic 
7.5844 4.0306e-12 

Similar results were obtained for 2-D elasticity [16]. 

3.3 Mesh Morphing in 3-D 

In the final example, a 3-D linear elasticity problem is considered. In the bearing 

block shown in Figure 8a two of the mounting holes are fixed, while the third 

mounting hole has a force in the y and z direction. The quantity of interest is the 

maximum displacement. The initial mesh configuration is shown in Figure 8b.  

The finite element problem is now solved over the mesh in Figure 8b using classic 

FEA. The quantity of interest is the maximum displacement. 



. 

Figure 8: (a) Initial mesh that is subsequently morphed and tangled. (b) Overlap-

ping regions (dark portions) of the tangled mesh. 

Next, the diameter of the bearing surface (center hole) is increased from 63.5 mm 

to 72 mm as shown in Figure 9a. Instead of remeshing, the mesh is morphed using 

the simplex method described in [13].  After morphing, the mesh gets tangled, and 

the overlapping regions of the tangled mesh are illustrated in Figure 9b. The finite 

element problem is now solved over the tangled mesh in Figure 9b using the 

methodology described in this paper. Further, the new geometry is also remeshed 

and solved using classic FEA, to facilitate numerical comparison. 

. 

Figure 9: (a) Initial mesh that is subsequently morphed and tangled. (b) Overlap-

ping regions (dark portions) of the tangled mesh. 

 

Table 3 lists the maximum deflection for the initial configuration, the tangled con-

figuration, and a remeshed configuration (all quantities are in mm). As one can 

observe, the displacement of the tangled mesh closely matches that of the 

remeshed solution. On the other hand, commercial FEA resulted in significant er-

rors for the tangled mesh problem. 



Table 3: Comparison of maximum total displacement 

 Initial Con-

figuration 

Final Configuration 

 Morphed Remesh 

Maximum 

Total Dis-

placement 

2.1230e-2 2.5392e-2 2.5371e-2 

4 Conclusions 

In this paper an extension to the underlying mathematics of the classic finite ele-

ment formulation is proposed. This extension allows FEA to be used in conjunc-

tion with tangled meshes that were previously considered unacceptable. In addi-

tion, it is shown that the proposed methodology can be easily incorporated into 

classic FEA with minor modifications. Numeric experiments illustrate the correct-

ness of the proposed methodology; this is in contrast to commercial implementa-

tions of FEA.  

While only simplicial elements were considered, the extension to non-simplicial 

elements, e.g. quadrilateral and hexahedral elements, is currently being investigat-

ed. From a tangling perspective, the most critical difference between simplicial 

and non-simplicial elements is that non-simplicial elements can also suffer from 

implicit tangling in that an element can overlap with itself.  It would also be ap-

propriate to reevaluate mesh generators and mesh optimizers. Similarly, while the 

theory extends to non-linear problems, further investigation and experiments are 

required.   
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